Hashtag Recommendation Using Dirichlet Process Mixture Models Incorporating Types of Hashtags
نویسندگان
چکیده
In recent years, the task of recommending hashtags for microblogs has been given increasing attention. Various methods have been proposed to study the problem from different aspects. However, most of the recent studies have not considered the differences in the types or uses of hashtags. In this paper, we introduce a novel nonparametric Bayesian method for this task. Based on the Dirichlet Process Mixture Models (DPMM), we incorporate the type of hashtag as a hidden variable. The results of experiments on the data collected from a real world microblogging service demonstrate that the proposed method outperforms stateof-the-art methods that do not consider these aspects. By taking these aspects into consideration, the relative improvement of the proposed method over the state-of-theart methods is around 12.2% in F1score.
منابع مشابه
Hashtag Recommendation for Multimodal Microblog Using Co-Attention Network
In microblogging services, users usually use hashtags to mark keywords or topics. Along with the fast growing of social network, the task of automatically recommending hashtags has received considerable attention in recent years. Previous works focused only on the use of textual information. However, many microblog posts contain not only texts but also the corresponding images. These images can...
متن کاملHARRISON: A Benchmark on HAshtag Recommendation for Real-world Images in Social Networks
Simple, short, and compact hashtags cover a wide range of information on social networks. Although many works in the field of natural language processing (NLP) have demonstrated the importance of hashtag recommendation, hashtag recommendation for images has barely been studied. In this paper, we introduce the HARRISON dataset, a benchmark on hashtag recommendation for real world images in socia...
متن کاملTwitter Hashtag Recommendation using Matrix Factorization
Twitter, one of the biggest and most popular microblogging Websites, has evolved into a powerful communication platform which allows millions of active users to generate huge volume of microposts and queries on a daily basis. To accommodate effective categorization and easy search, users are allowed to make use of hashtags, keywords or phrases prefixed by hash character, to categorize and summa...
متن کاملTemporal Effects on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approach
Hashtags have become a powerful tool in social platforms such as Twitter to categorize and search for content, and to spread short messages across members of the social network. In this paper, we study temporal hashtag usage practices in Twitter with the aim of designing a cognitive-inspired hashtag recommendation algorithm we call BLLI,S . Our main idea is to incorporate the effect of time on ...
متن کاملHashtag Recommendation Using End-To-End Memory Networks with Hierarchical Attention
On microblogging services, people usually use hashtags to mark microblogs, which have a specific theme or content, making them easier for users to find. Hence, how to automatically recommend hashtags for microblogs has received much attention in recent years. Previous deep neural network-based hashtag recommendation approaches converted the task into a multiclass classification problem. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015